DNV-GL

Energy Transition Outlook – the role for gas in a greener Europe 19th European Gas Conference, 29-30 May 2018, Oslo

Liv A. Hovem, CEO, DNV GL – Oil & Gas

Forecast world primary energy supply

Forecast world primary energy supply by source

Europe is likely to remain best in class

DECARBONIZATION OF THE REGIONS' ENERGY USE

Hydrogen has great flexibility and a variety of potential uses

Heating

Storage

Mobility

Power generation

The role of power-to-gas in enhancing flexibility

Power to Gas - Storage & Transmission option: Energy island in North Sea?

News 03/23/2017

Three TSOs sign agreement on North Sea Wind Power Hub

TenneT TSO B.V. (Netherlands), Energinet (Denmark) and TenneT TSO GmbH (Germany) today signed a trilateral agreement for the development of a large renewable European electricity system in the North Sea. This so-called 'North Sea Wind Power Hub' has the potential to supply 70 to 100 million Europeans with renewable energy by 2050.

News 09/13/2017 Innovation Offshore Project Corporate

Gasunie to join North Sea Wind Power Hub consortium

- North Sea Wind Power Hub will make a major contribution to the EU's offshore wind energy targets for 2050
- Consortium expanded to include four electricity and gas grid operators: TenneT Netherlands, TenneT Germany, Energinet and Gasunie
- Project helps pave the way for hydrogen economy
- > Power-to-Gas solutions to be used on 'Power Link Islands'

Example: Gas and Electricity transmission compared Large scale transporting of gas more cost efficient than transmitting electricity

BritNed Interconnector

Bacton-Balgzand Gas Pipeline

bbl company

Length	260 km
Investment	600 MEUR
Capacity	1 GW
Specific investment	€ 230 per kW/100 km

Length	230 km
Investment	600 MEUR
Capacity	20 GW capacity
Specific investment	11 EUR per kW/100 km

Hydrogen is today primarily produced from natural gas

- Hydrogen from fossil fuels ca 95% Hydrogen from electrolysis ca 5%
- Global production: ca 50 Mt
- Predominantly used (on-site) by producer, only ~4% is traded freely

Costs are coming down

- Economy of scale and further cost compression may be achieved

- Large-scale production preferable more efficient & economies of scale
- Cost of electricity and value of grid balance and storage key to bring costs down
- Cost of carbon and CCS important for entire value chain

Source: Shell Hydrogen Study, Shell Deutchland Oil Gmbh (Own diagram)

Hydrogen without CCS will not contribute to a greener energy system

Converting to a hydrogen economy based on fossil fuels would have no advantage in reducing CO2 emissions unless the CO2 can be isolated via CCS

Carbon capture and storage (CCS)

CCS will not take off rapidly, but will start to gain momentum towards **2050**

A higher cost of carbon is critical for the role of CCS in the mitigating climate change

CCS cost per tonne of CO₂ assuming limited uptake of this technology:

2010	2020	2030	2040	2050
115	115	110	88	71

Carbon prices
expected to increase,
but remain lower than
real emission costs

projects expected to come to fruition before **2035**.

Major efforts drive hydrogen forward - H21 project in UK

- Convert City of Leeds to 100% Hydrogen
- 75% per cent reduction in CO₂ 1.5million tonnes captured per year
- "..converting the gas network to hydrogen is technically feasible and economically viable.."

DNV GL and hydrogen

- For the H21 NIC project the initial investigation will give critical evidence in validation of the technicalities surrounding the conversion of the existing natural gas network in Leeds.
- DNV GL was chosen as a primary partner and the work will involve the <u>DNV GL's Spadeadam research and testing site</u> and advisory services team.
- It will cover three critical areas to be subsequently used in the quantitative risk analysis: ground and air concentration testing; background consequence testing and operational testing. Results from these tests will be used to identify any modifications to operational working practices that may need to be considered.

DNV-GL

Get prepared for hydrogen addition to natural gas, get HYREADY!

Joint Industry Project / started January 2017

18 DNV GL ©

www.dnvgl.com

SAFER, SMARTER, GREENER

The trademarks DNV $GL^{\$}$, DNV $^{\$}$, the Horizon Graphic and Det Norske Veritas $^{\$}$ are the properties of companies in the Det Norske Veritas group. All rights reserved.